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1. INTRODUCTION 

For many large scale surveys like those con- 
ducted by the U.S. Bureau of the Census and the 
National Center for Health Statistics, data are 
obtained through complex designs often involving 
both clustering and stratification as well as 
multi -stage selection. Moreover, sub- population 
(or domain) characteristics are estimated by 
appropriate ratio methods. As a result, standard 
methods of multivariate analysis (which assume 
simple random samples) are not directly applica- 
ble. On the other hand, since sample sizes in 
such situations are usually very large, it gen- 
erally can be assumed that the various estimates 
of sub -population characteristics do approx- 
imately have multivariate normal distributions 
with covariance matrices which can be consist- 
ently estimated by either direct or replication 
methods. Thus, a weighted least squares approach 
can be used to investigate various relationships 
among these estimates and test appropriate 
hypotheses. This paper is concerned with the 
application of this methodological strategy for 
analyses involving: 

1. comparisons among cross -classified sub - 
populations, 

2. evaluations of the existence and nature 
of trends. 

2. METHODOLOGY 

2.1. Definitions and Preliminaries. 

Population: A set of N individuals indexed by 
the subscript i 1,2,...,N. 

Sample Design: Probability random sample of size 
n with T 1 trial for the measurements on each 
selected individual. As indicated by Cornfield 
[1], this sample design can be characterized by 
random variables where 

1 if population element i is in sample 
Ui 

otherwise 

In this context, = E {Ui} represents the prob- 
ability of selection for the i -th population 
element and = E {UjUi'} represents the prob- 
ability for the joint selection of both the i -th 
and i' -th population elements. Unless stated 
otherwise, we shall usually assume that sampling 
is without replacement in which case = E {Ui } 

= E {Ui} ci; however, the for i i' must 
be determined by appropriate calculations which 
correspond directly to the specific method of 
selection -- although for some complex designs 
this can potentially involve very difficult 
mathematical problems. 

Measurement Process: 
a. Self- enumeration. In other words, each 

individual in the sample responds individ- 
ually and independently to the survey 
measurement process. Eg., mailed question- 
naires or personal contact situations in 
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which the role of the enumerator or inter- 
viewer is minimized. 

b. Random assignment of interviewers. There 

is a fixed population of B interviewers 
which are available for assignment to the 
n sampled individuals. It will be assumed 
that this process is undertaken at random 
with nh individuals being associated with 

B 
the h -th interviewer. Thus, n = 

h =1 

The assignment of interviewers can be char- 

acterized by random variables Thi, where 

1 if interviewer h is assigned to 

Thi = individual i given i is in sample 
0 otherwise, 

and their corresponding joint probability 
distribution. 

Basic Observational Unit: The random variable 

represents the measurement corresponding to 

the -th attribute (where = 1,2,...,m indexes 

the m attributes) of the i -th individual in the 

population with respect to the h -th interviewer. 
The subscript t indexes a conceptual sequence of 

replications of this overall measurement process 

for any specific individual in the sample. 

Henceforth, the c- superscript will usually be 

dropped for notational convenience. 

2.2. Model. In the spirit of the approach of 

Wilk and Kempthorne [11], one model of interest 

involves assuming that the Yhit can be repre- 

sented as an additive function of an overall 

mean, a fixed main effect due to the i -th indi- 

vidual, a fixed main effect due to the h -th 

interviewer, a fixed interaction effect due to 

the combination of the h -th interviewer and i -th 

individual, and a random residual effect corre- 

sponding to the combination of the h -th inter- 

viewer, i -th individual, and t -th trial. In this 

regard, we have the structure 

_Yhit = 
Hi + ( BH)hi + Zhit 

where Y, Bh, Hi, and (BH)hi are determined in the 

following manner from 

CE 

{Yhit} 

Yhi 
h =1 =1 

1 N 
Bh 

1 
Hi = (YhiY) (Y1-YT) 

( BH)hi (Yhi Bh -Hi -i Y) (Yhi Yi 
+Y) 

Zhit Yhi) 

With respect to measurement error models like 

those developed by the U.S. Bureau of the Census 
(see [4]), the {Zhit} reflect trial to trial var- 

iation in the context of all potentially observ- 

able measurements of a particular attribute 



for any specific individual and interviewer com- 
bination. Thus, this source of variation repre- 
sents intrinsic response error which is due to 
factors which are not under control with respect 
to the sampling selection and measurement data 
collection processes. Such response errors may 
be due to structural weaknesses or vagueness in 

the definition of the phenomena being measured 
for an individual (eg., attitudes related to 
political opinions, consumer taste preferences, 
etc.) or a consequence of some underlying sto- 
chastic process (occurrences of motor vehicle 
accidents and subsequent injuries, outcomes per- 
taining to judgments in court cases, survival 
subsequent to diagnosis and treatment for dis- 
ease, pregnancy outcomes like birthweight, etc.). 
In view of these considerations, we shall hence- 
forth assume that the {Zht} are mutually uncor- 
related and Var {Zhit} E Zhit} = nhi 

The {Thi} give rise to external response 
error with respect to the fact that there is con- 
trolled variability in the basic measurement 
process to the extent that different interviewers 
can potentially tend to report different observa- 
tions for a particular attribute of a specific 
individual. The nature of this source of error 
is characterized by the {Bh} and {(BH)hi }. Since 
these quantities are rather difficult to manipu- 
late in general terms, we shall henceforth assume 
that they are unimportant and can be neglected; 
i.e., we shall assume Bh =0 for all h and =0 
for all h,i. For other discussion, see Koch [71. 

Finally, the {Ui} reflect sampling error 
since their joint probability distribution char- 
acterizes the selection aspects of the survey 
design in the sense of which individuals are in 
the sample and which are not. 

a. Special Case for Only Sampling Errors. In 

this situation, - 0 for all h,i and 
thus Zhit O. As a result, the model 
becomes 

Yhit + Hi' 

Examples might include determinations of 
whether a product was defective or not in 
certain types of acceptance (inspection) 
sampling or the cost of purchases of stock 
items in inventory samples. 

b. Special Case for Only Response Errors. In 
this situation Hhi 0 for, all h,i. As a 
result, the model becomes 

Yhit + Zhit 
Examples might include determinations of 
the distribution of the ratio of the har- 
monic vs. geometric mean for the observa- 
tions corresponding to the faces of four 
twelve -sided dice, determinations based on 
repeated simulations of a given stochastic 
process which are all based on the same 
computer random number generator (although 
with different starting points), repeated 
experimental observations on different sam- 
ples from basically the same bacteria cul- 
ture, repeated observations on the prefer- 
ences of a specific individual with respect 
to (blind) paired comparisons of particular 
food or beverage products. However, as 
will be argued later, perhaps the most . 

important situations of this type involve 
single observations on distinct individuals 
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who belong to a matched set based on twin rela- 
tionships, other family relationships, or equiva- 
lence with respect to several demographic or 
other characteristics. 

2.3. Other Assumptions. 
a. No interaction in the measurement process 

in the sense that Et specification 
of {Ui} and {Thi} } = Yhi and hence con - 
ditional expected value notation of the 
type Et{ } will not be used in any of the 
remaining discussion. 

b. The measurement process is unbiased in the 
sense that the population mean Y (or the 
population total Y NY) is the population 
parameter of interest. 

2.4. Linear Sample Statistics. Let us consider 
the model described in (2.2) with respect to the 
statistics 

NN 

yt B ill hL1WhiuiThiYhit 

which is a linear combination of the observed 
elements in the sample with the being known 
specified coefficients. On the basis of previous 
assumptions, we have 

E 
{yt} B 

=1 h 

where = E {U1} and Ahi E {ThilUi = 1 }. In the 
remainder of this paper, we shall assume that the 
weights are the reciprocals of the probabilities 
associated with each (h,i) combination; i.e., 
Whi (1 /4iAhi) so that yt represents a general - 
ized Horvitz and Thompson [5] estimator which 
accounts for non -uniform assignments of inter- 
viewer effects. We shall now assume that the 
{Ahi} are uniform in the sense that E {ThilUi =1} 
(1 /B) in which case we can write yt the usual 
Horvitz form 

yt = Willi{ ThiYhit} i1 h 

where Wi = and Yit = {LThiYhit} 
so that 

N 
E{yt} Yi Y (NY) 

i=1 

since Et T {Yit} = Y1 with Et T{ } being inter- 
preted as expected value respect to both 
conceptual repeated trials as.well as interviewer 
assignments. 

As indicated in Koch [7], the variance of yt 
under the model (2.2) in conjunction with the 
assumptions (2.3) can be written as 

var (SRV) + (n- 1)(CRV)} + {(sV)} 

with 

(SRV) = Simple Response Variance 
N 

- ( Yi)2 

(CRY) = Correlated Response Variance 
N2 N 

N(N -1) 



(SV) Sampling Variance 
N N 

= 1}YiYi, ; where 

N N 

(n/N), = 
N(N-1) °ii' 

n(n-1)/N(N-1), and = 

In accordance with the assumptions regard- 
ing intrinsic response error (due to uncontrolled 
observational factors) and external response er- 
ror (due to interviewer effects, etc.) given in 
2.2 and the assumptions in 2.3 it follows that 
there is no correlated response variance compo- 
nent since CRV 0 under these conditions and 

Var {yt} simplifies to Var {yt} = (SRV) } + {(SV)} 

N 
where (SRV) = N2 with ni2 being 

defined by 
Whit' 

2.5. Estimators for the Variance of a Linear Sam- 
ple Statistic. Here, we shall restrict attention 
to the usual Horvitz -Thompson statistic 

N 

yt (- 
under the assumptions given in 

(2.2) -(2.4) with respect to the uncorrelated na- 
ture of intrinsic response errors and the non- 
existence of external response errors. 

a. Direct Methods. A lower bound estimator 
for the variance of yt is the Horvitz - 

Thompson quadratic statistic 

N N 

i=1 

2 

for which E {(SV) -{ 
N 

2 
(SV). 

Similarly, an upper bound estimator for 
Var t is 

1/2 
N N 1 

(SV) 
i 

} 

1 

for which 
1/2 

E{(SV)}= (SRV)}+1l 

{ii, 1 . 

Although and appear to be quite 
different, it follows that if n and N are 
large and if n « N so that the terms 
(1 -4) which tend to behave like (1 -n /N) 

can be replaced by l's, then (SV) (SV). 

Finally, these considerations can be sim- 
plified if all the are equal to (n /N) in 
which case 

E {(S = Var (SRV) 
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E {(SV)} = Var {yt} + 
(N-n) 

(SV) 

Moreover, if all the equal to 
n(n- 1) /N(N -1), then the expressions for 

(SV) and (SV) also simplify to the familiar 
forms 

(SV) =N2 
1 n 1 - 2 

N){(N-1) i=lUi(Yit 

(V) = N2(n) (N-1) 

where = (y /N) is the estimator for the 
population mean (in this case, the ordinary 

N 
sample mean) and s2 - 

is the sample variance estimator in the 
usual sense. 

In summary, if sampling variance is 
most important source of error, then 

(SV) is the most appropriate estimator 

since (SV) is needlessly conservative. How- 
ever, if intrinsic response variance is the 

most important source of error, then (SV) 

i9 ,the most appropriate estimator since 
(SV) will tend to underestimate the actual 
variance in a potentially misleading man- 
ner. 

b. Replication Methods. For many surveys in- 
volving complex multistage selection proce- 
dures, the numerical calculations associ- 

ated with estimators like (SV) or (SV) can 
require considerable effort with respect to 
programming as well as substantial computer 
time costs. The main reasons for this is 
that these expressions involve n2 terms 
and the subscript i may be a vector sub- 
script. Thus, in recent years, there has 

been considerable interest in the develop- 
ment of alternative estimation procedures 
for the variances of sample statistics. In 

particular, one such method which has been 
already used extensively by the National 
Center for Health Statistics as well as 
other institutions or organizations en- 
gaged in survey research is the method of 
balanced repeated replication (BRR) as dis- 
cussed for example by Kish and Frankel [6], 

Koch and Lemeshow [8] and McCarthy [9]. 
The principal concept which governs the use 
of BRR is that variability of a statistic 
based on a total sample can be estimated in 
terms of the variability of that statistic 
across subsamples (called replications) 
which reproduce (except for size) the com- 
plex design of the entire sample. Hence, 
BRR has considerable appeal in those situa- 
tions where clustering causes the underly- 
ing distribution theory for determining the 

as well as the computational effort 

for calculating (SV) or (SV) to become im- 
practical. One specific version of BRR is 
the method of balanced half samples. This 

procedure is characterized by a matrix H 
with elements hik defined by 

individual i is in k -th half sample 
hik otherwise 



For each half sample, we form the estimator 

ytk = )UihikYit 
which is directly a- 

'nalogous to with respect to estimating 
the population total Y. The resulting es= 
timator V for the variance of yt is 

= 
V L k =1(ytk - yt)Lwhere 

L denotes the 

number of half sample partitions. In this 
context, it should be noted that the appro- 
priate choice of the matrix represents a 
very important feature of this method for 
determining the estimator V. Some efficient 
strategies for this purpose are described 
in [9]. Finally, it should be recognized 
that this method of estimating variance 
primarily pertains to those situations 
where there are no important sources of ex- 
ternal response errors (eg., interviewer 
effects) as assumed in most parts of this 
paper. However, appropriate modifications 
with respect to the definition of are 
certainly within the scope of the general 
BRR approach for constructing replication 
estimators of variance which reasonably re- 
flect this source of error as well as in- 
trinsic response error and sampling error. 

2.6. Estimators for the Covariance of Two Linear 
Sample Statistics. Suppose and cor- 
respond to the Horvitz -Thompson statistics for 
estimating the population totals corresponding to 
the -th and t' -th attributes respectively. Then 
the methods described in (2.5) can be used to de- 
termine estimators for Var {yt(0}, Var {yt(V) }, 
and Var {yt(D+ where 

+ + 

is the Horvitz -Thompson statistic for estimating 
the sum of the population totals associated with 
the -th and V-th attributes in terms of the re- 
spective sums for individuals who are selected in 
the sample. However, this means that an estima- 
tor for Gov can be directly ob- 
tained from the identity relationship 

Cov }- 

Var {yt(t)} - Var {yt(V) 

by replacing the respective variance expressions 
by their corresponding estimators. Thus, an 
On x m) estimated covariance matrix V can be de- 
termined for the joint set of estimators for the 
population totals corresponding to m attributes 
by using a computer program which calculates es- 
timates of variance on individual univariate var- 
iables in conjunction with a variable sum opera- 
tion and the previously indicated identity. 

2.7. Estimates for Domain Means and Other Ratio 
Statistics. The term domain refers to subclasses 
derived from a particular response variable which 
is measured during the survey (ie., a posteriori 
with respect to selection) and which takes on ca- 
tegorical values (either directly as with marital 
status or indirectly after grouping'as with age). 
The term strata refers to subclasses derived from 
a factor variable which is presumed known for 
each individual in the population prior to the 
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undertaking of the survey (eg., region of the 
country, or urban vs. rural, etc.). Moreover, in 
most applications, several strata -type variables 
are directly related to the nature of the selec- 
tion process with corresponding effects induced 
on the joint distribution of the Ui in -some 
manner (ie., separate independent random samples 

are usually obtained from each subpopulation cor- 
responding to appropriate combinations of such 
strata -type variables). 

Estimates of subpopulation totals for both 
domains as well as strata can be formulated in 
terms of indicator variables of the type 

1 individual i is classified in j -th do- 
main on t -th trial measured by h -th 
interviewer 

0 otherwise 
where j 1,2,...,s by forming statistics like 

1 

yjt = h 

We shall assume that the domain classification 
process is affected neither by intrinsic response 
error nor external response error and is also un- 
biased in the sense of (2.3); ie., we have 

the individual i is always classi- 

Xhijt = 
Xij fied correctly in the j -th domain 

0 otherwise. 
However, it should be recognized that the presence 

of such response errors is a definite possibility 
in many survey situations and can have potentially 

important effects on the statistical properties of 

estimators like yjt as discussed in Koch [7]; eg., 

yjt is not necessarily unbiased unless such as- 
sumptions apply. Finally, strata -type variables 
are viewed in this same framework by definition 
together with the fact that the actual values of 
the {Xij} are known a priori constants for each 

individual in the population. 
As indicated in (2.4) we shall consider the 

Horvitz - Thompson type estimators 
N 

yjt = )UiGijt 
which can also be written in 

N 
the form 

i)UiGijt 
where 

However, in this context, the discussion in (2.5)- 
(2.6) can be applied to obtain an estimated covar- 

iance matrix V for the vector of domain total es -. 
timators Y2t, yst). Similarly, 

these same considerations can also be applied to 

the multivariate case of m attribute variables by 
working with the composite vector 

' 
(1) 

' ' ' 
In many situations, there is actually greater 

interest in domain means which are basically ratio 

estimates of the type 

y 
jt 

/ 1=1( = (Yjt /xjt). 

If Y't and 

then the set of domain means =(7lt'72t'Yst) 
can be written in the compound function framework 

outlined in Forthofer and Koch [2] 

t 
yt = }] where A = I2s (which 

is the (2s x 2s) identity matrix), 



K= 
1 0 -1 0 ... 0 

0 1 ... 0 0 -1 ... 0 

0 0 ... 1 0 0 ... -1 

and R (which is the (s x s) identity matrix) 
and the loge ( ) vector operation forms the vec- 
tor of natural logarithms and the exp vector op- 
eration forms the vector of anti- árithms. 

An estimate of the covariance matrix for 

which is based on the large sample Taylor series 

linearized approximation can be obtained with di 

rect matrix multiplication operations as follows 

Var {y }= V = RD -1AVA'D -1K'D R' 
-y _q_ 

where "a" means "i estimated by" and where Da re- 

presents the diagonal matrix with elements -the 

Y 
vector a = A on the main diagonal and Dc, re- 

xt 

presents the diagonal matrix with elements of the 

vector q. = exp {K[loge(a)]} on the main diagonal. 

Estimated cóvárfance mátrices for other sets of 

compounded functions involving estimates of domain 
totals can be produced in an analogous manner; eg, 
differences between domain means, post- stratified 

means, certain types of vital rates based on life - 

table functions, and rank correlation type mea- 

sures of association. 
In summary, compound function operations can 

be Used to compute the vector pt of estimated 

means for any given set of donhin subpopulations. 
The corresponding estimated covariance matrix V.. 

can be calculated by previously described metal 
multiplication operations. Alternatively, an es- 

timated covariance matrix V.V. could also be ob- 

tained by using the replication methods described 

in (2.5b) although there are potentially certain 

problems with singularities with this approach for 

reasons which are outlined in [8]. Nevertheless, 
the estimator }+t and its estimated covariance ma- 
trix y, can bey obtained for any specific survey 
situation within the context of the general 

framework described in (2.1)- (2.7). The problem 
now is to consider a general approach for under- 
taking statistical inference with respect to 

2.8. Multivariate Analysis for Estimates from 
Complex Sample Survey Data. Let denote a 
(g x 1) vector of statistics like the domain mean 
estimates described in (2.7). Let denote an 
appropriata valid and consistent estimate of the 
corresponding (g x g) covariance matrix for ob- 
tained by methods like those described in (2.4)- 
(2.7) . 

The relationship between variation among the 
elements F1,F2,...,F of the vector and certain 
aspects of the nature of various subpopulations 
'(or domains and subdomains) can be investigated by 

fitting linear regression models to the vector F 

by the method of weighted least squares.. This as- 

pect of statistical analysis can be characterized 

by writing 

F 

F1 
F2 

F 

x11 x12 u 

x21 
x22 

xg2 ... xgu 

b2 

[b. 

b. 

X b 

where is the pre- specified design (or indepen- 

dent variable) matrix of known coefficients with 
full rank u, b is the (u x 1) vector of unknown 
parameters or` effects, and means "is estima 
ted by." This particular model implies the exis- 
tence of a [(g - u) x g] matrix L which is ortho- 
gonal to X such that {f = L F = L X b = repre- 
sents a córresponding set implied- constraints. 
Thus, it follows that the covariance matrix of f 

can be estimated by Vf L L'. As a result,-an 
appropriate test staEtstic for -the goodness of fit 
of the model of interest is 

Q = 1f f'(L L') -1f 
which is approximately distributed according to 
the x2- distribution with D.F. =(g - u) if the over- 
all sample size n is sufficiently large that the 
elements of the vector have an approximate mul- 
tivariate normal distribution as a consequence of 
Central Limit Theory. Such test statistics are 
known as Wald [10] statistics and various aspects 
of their application to problems involving the 
multivariate analysis of multivariate categorical 
data are discussed in [2], [3]. Moreover, since 
the sample sizes associated with most complex sam- 
ple surveys are generally very large so that it is 
reasonable to assume that the resulting estimates 
of population characteristics tend to have approx- 
imately normal distributions ( as a consequence of 
Central Limit Theory), such Wald statistics pro- 
vide a valid and potentially useful framework for 
the multivariate analysis of the resulting esti- 
mates. However, the actual manner in which this 
approach is undertaken involves a weighted least 
squares computational algorithm which is justified 
on the basis of the fact that 

Q = f'(4 VF VF-1L')-if (F - X b)'VF 1(F - X b) 

where b - 1X) 
1f 

represent weighted 
least square estimates far the underlying parame- 
ters. In view of this IDENTITY and the large sam- 
ple validity of the Wald Statistic Q, the weighted 
least squares estimates are also regarded as 
having reasonable statistical properties because 
of the manner in which they determine Q. With 
these considerations in mind, it then can be noted 

that 1X) represents a consistent es- 
timate for the covariance matrix for b 

When an appropriate model has bean determined 
statistical tests of significance involving b may 
be performed by standard multiple regression pro- 
cedures. Linear hypotheses are formulated as 
H0: Cb 0, where C is a known (d x u) coeffi- 
cient- matrix and tested using the statistic 

QQ = 1Q'] b which is approxi- 
mately distributed according to the X2- distribu- 
tion with D.F. =d when the hypothesis HO is true. 

Successive uses of the goodness of fit tests 
and the significance tests specified by the C ma- 
trices represent ways of partitioning the model 
components into specific sources of variance. In 

this context, the statistics reflect the amount 
by which the residual sum of squares goodness of 
fit Wald statistic Q would increase if the basic 
model were simplified (or reduced) by substitu- 
tions based on the additional constraints implied 
by Ho: b O. This partitioning of total vari- 
ance into specific sources represents a statisti- 
cally valid analysis of variance for estimator 
functions arising from complex sample survey si- 
tuations. 



Finally, predicted values corresponding to 
ány specific model can be calculated from 

F X b X (X'VF and corresponding 

estimates of variance can bé obtained from the 
diagonal elements of VF = Such 

predicted values not oñly have the advantage of 
characterizing essentially all the important fea- 
tures of the variation in the original data, but 
also represent better estimates than the original 
function statistics F since they are based on the 
data from the entire - sample (ie., all subdomains 
combined) as opposed to its component parts. Fi- 
nally, they are descriptively advantageous in the 
sense that they make trends more apparent and 
permit a clearer interpretation of the effects of 
the respective independent variables comprising X 
on the vector F. 

3. APPLICATIONS AND EXAMPLES 

3.1. Strategies for applying the model. In 

applying the methodology of Section 2 it is 

necessary to have a data analytic strategy. This 

strategy depends on taking note of the apparent 
bimodal nature of the statistical sciences. 
There are two general types of statistics -- 

descriptive statistics and inferential statis- 

tics. The role of the descriptive statistic is 

primarily summarization and does not strictly 
justify any comparative or other type of conclu- 
sion being extracted from the data. On the other 

hand, the inferential statistic is often a dimen- 
sionless index which may have only limited 
descriptive value. Its primary role is an 
orientation toward decision - making in the sense 
of being interpreted as either consistent with or 
in contradiction to a particular hypothesis which 

is of interest with respect to formulating con- 
clusions from the data. Hence, certain infer- 
ential statistics can be used to determine 
whether any observed differences between two 
groups of individuals, such as a group of healthy 
patients and a group of diseased patients, are 

real or systematic as opposed to being due to 

chance variation; others can be used similarly to 

interpret the association among certain variables 

which are, for example, indicative of clinical 

status. 
The preceding remarks have been directed at 

some of the objectives of statistical analysis. 

As formulated here, they appear reasonably clear 

and concise. However, the various ways in which 

statisticians operate in accomplishing them often 

appear heuristic and mystical. This impression 

results from the fact that "statistics" is in 

some sense an estranged marriage between "routine 

data processing" and "abstract mathematical prob- 

ability theory." The paradox here is that "data 

processing" exists in the real world and can 

always be used to produce descriptive measures 

like arithmetic averages, percentiles, and least 

squares coefficients from any set of data, no 

matter how collected in terms of the underlying 

research design. Such computations constitute 

what will be called a "numerical analysis" of the 

,data. Of course, the conclusions resulting from 

this type of approach are entirely limited to the 

data under consideration and cannot be rigorously 

generalized to any larger underlying population 
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from which it is a sample. Moreover, a strict 
"numerical analysis" does not permit us to for- 
mally document the precision or reliability of 
quoted descriptive summary measures. 

On the other hand, probability theory is a 
set of abstract axioms, definitions, and the- 
orems, all of which are very much outside the 
real world, but which, under suitable assump- 
tions, can provide reasonable mathematical models 
for characterizing numerically measured quanti- 
ties. Within this framework, "statistics" is the 
liaison between a set of data and a suitable 
mathematical probability model. Hence, the most 
crucial aspect of any statistical analysis is the 
validity of the formal assumptions which underlie 
the corresponding probability model. Indeed, 

this principle can be underscored in some cases 
to the extent of identifying those assumptions 
or conditions which lead to contradictory conclu- 
sions and then choosing that conclusion together 
with its supporting analysis, for which the cor- 
responding set of assumptions seems to be most 
empirically and /or physically realistic. It is 

in this context that the paradoxes associated 
with the sayings dealing with "how to lie with 
statistics" can be resolved. 

Although the previously described point of 
view appears somewhat different from that which 
is concerned with developing standards for justi- 
fying statistical statements of a descriptive or 
inferential nature, there are definite similar- 
ities with respect to the underlying philosophy. 
In particular, the Q statistics in (2.8) repre- 
sent an analytical procedure for assessing 
whether there is any variation among a given set 
of statistics and if so whether it can be parti- 
tioned in meaningful manner. The former question 
is entirely of an inferential nature and can be 
interpreted as dealing with the multiple compar- 
ison problem in a Scheffe simultaneous test 
procedure sense. The latter is both descriptive 
and inferential and may also be possibly guided 
to some extent by substantive considerations per- 
taining to the subject matter area for which such 
analysis is being undertaken. Similar remarks 
can be applied to the predicted values which are 
generated from various fitted models. These 
points will all be discussed in more detail for 
the examples in Section 3.2. In summary, there 
are two basic goals which are associated with the 
analysis of complex sample survey statistics as 
well as any other types of data: 

1. Sample statistics which are essentially 
similar (in the sense of not being statis- 
tically different in a significance testing 
context) should not be reported in tables 
as different, although raw or unanalyzed 
data should of course be displayed where 
appropriate. Alternatively, the same esti- 
mate should be reported for each element in 
such cases. Moreover, one method for 
obtaining such estimates is weighted least 
squares as described in (2.8). 

2. Sample statistics which are significantly 
different (at some appropriate level;eg., 

-.05) should be reported in terms of corre- 
spondingly different estimates. However, 
attempts should be made to structurally 
characterize such differences in terms of 
models which can be fitted by weighted 



least squares. In this latter context, it 
should be recognized that both significance 
testing inferential considerations as well as 
percent explained variation descriptive consid- 
erations are important. 

3.2. Examples of the model. The preceding re- 
marks will guide us in analyzing the following 
examples. All four are taken from the National 
Center for Health Statistics, Office of Statis- 
tical Methods, (unpublished manuscript). This, 
rather than the original sources indicated on the 
examples, was used to facilitate the computation 
of standard errors. In some cases, the standard 
errors were provided in the original sources, 
however in others it could only be computed with 
difficulty or not at all. In all cases sample 

correlations between the statistics were 
assumed to be zero. However, some preliminary 

.investigation suggests that the Q- statistics are 
conservative the case of positive equal cor- 
relation and anti- conservative in the case of 
negative equal sample correlation. That is, for 
positive correlation some differences will go 
undetected while for negative correlation non- 
existent differences will appear. 

Our first example analyzes the estimates of 
the proportion of dentulous persons, ages 18 -79, 
needing to see a dentist prior to next regular 
visit, in various marital states. Our prelim- 
inary model saturates the variation space and the 
Q- statistic of 18.66 for total variation indi- 
cates that significant variation exists among 
marital states with respect to a X2(D.F.=4) dis- 
tribution. This permits an examination of classes 
to identify the ones contributing the greatest 
variation. b5 which corresponds to the dif- 
ference between the separated and never married 
groups generates Q =16.55 which is significant even 

Example 1 

Comparisons Among Several Subdomains Within a Domain 

Estimated Aggressive Model ,Conservative Model 

Subdomain Proportion Estimated 

of Needing to Standard Smoothed Estimated Smoothed Estimated 

White Adults See a Dentist Error Predicted Standard Predicted Standard 

at an Early Date Values Errors Values Errors 

Married .378 .022 .389 .019 .366 .016 

Widowed .420 .049 .389 .019 .366" .016 

Divorced .426 .058 .389 .019 .366 .016 

Separated .627 .071 .627 .071 .627 .071 

Never Married .318 .027 .318 .027 .366 .016 

Preliminary Model 

X 

1 1 

1 0 

1 0 

1 0 

1 0 

0 

1 

0 

0 

0 

0 0 

0 0 

1 0 

0 1 

0 0 

, b 

.318 

.060 

.102 

.108 

.309 

Statistical Tests D.F. Q 

b 

b 0 

b5 
5 

0 

1 

1 

1 

1 

2.97 

3.32 
2.85 
16.55 

b =0,b =0 
=03 b 

2 
=b 

3 
b 

3 

2 

5.74 
1.06 

Total Variation 4 18.66 

Final Models 
Aggressive 

1 0 

1 1 0 

X= 1 1 0 , b= .071 

111 .238 
1 0 0 

Statistical Tests D.F. Q 
b a 0 1 4.69 

b2 0 1 10.45 

b23+ b3 a 0 1 16.55 

Model: b2 = = O,b =0 2 17.60 
Residual GOP 2 1. 

Total Variation 4 18.66 

Conservative 

1 0 

' 

0 

X = 0 b = 
366 

1 
627 

1 

Statistical Tests D.F. Q 
b1 - b2 0 1 12.91 

Model: b 0 1 12.92 

Residual 2COF 3 5.74 

Total Variation 4 18.66 

Actual Source: National Center for Health Statistics, Office of Statistical Methods, 

Manual on Standards for Reviewing Statistical Reports (Unpublished Preliminary Draft), 

June 1973. 
Original Source: National Center for Health Statistics, Vital and Health Statistics, 

Series 11, Number 36., "Table 5. Percent of dentulous adults who should see a dentist 

at early date by marital status, race, and sex: United States, 1960 -62," p. 14. 
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in the total variation space, that is with re- 
spect to a X2 (D.F. =4) distribution. Further, 
there is no difference among the remaining ever 
married groups Q=1.06, with respect to a 
(D.F. =2) distribution. The difference between 
the never married and remaining ever married 
groups is somewhat more subtle. There are two 
approaches. The conservative model groups never 
married, divorced, widowed, and married into one 
group and distinguishes only the separated group. 
The residual Q =5.74 is nonsignificant with re- 
spect to a X2 (D.F. =3) distribution but may con- 
ceal an important component of variation as re- 
vealed by the aggressive model. The aggressive 
model has three groups, never married, separated, 
and other ever married. This model fits very 
well with a residual Q =1.06 which is nonsignifi- 
cant even with respect to a X2 (D.F.=2) distribu- 
tion. The smoothed values fulfill our goal of 
displaying differences only where they'xist'; the 
question of which model is to be preferred is one 
that should be settled on substantive grounds. 

Estimates of mean baby birthweight for var- 
ious family income and mother's employment status 

Comparisons Among the 

categories provide our second example. The total 
variation, Q=22.83, in the preliminary model is 
significant with respect to a X2(D.F. =5) distri- 
bution, so as in example one, an effort to char- 
acterize the groups must be made. Parameters b2 
and b3 compare the first to third and the second 
to third income groups and b2 is individually 
significant. In fact, the Q that examines 
b2 -2b3 =0 is only .05 so such a characterization 
of income is plausible. The variation associated 
with employment Q=14.24 is significant with 
respect to a x2(D.F.=3) distribution so these 
effects may also be further examined. Moreover, 
there is no interaction (employment statùs b 
income level), Q=1.00, with respect to a X2 
(D.F. =2) distribution. These considerations lead 
to our final model and smoothed predicted birth - 
weights which show only significant differences. 
This model has a small residual, Q=1.18, which is 
non -significant with respect to a X2(D.F. =3) dis- 
tribution. It is also parsimonious in the sense 
that it contains only three parameters which per- 
mits a reduction in the standard errors of the 

Example 2 

Corresponding Subdomains of Two or More Domains 

Domain: Sub domain: Estimated Estimated Smoothed Estimated 
Family 
Income 

Wife's 
Employment 

Mean Baby 
Birthweight 

Standard 
Error 

or 
Predicted 

Standard 
Error 

Level Status (grams) Birthweight 

$3000 -4999 Employed 3230 23.46 3232 16.65 
Unemployed 3290 17.96 3293 14.35 

$5000 -6999 Employed 3280 22.11 3263 12.82 
Unemployed 3320 18.08 3323 10.47 

$7000 and Employed 3280 21.15 3294 15.81 
over Unemployed 3360 18.36 3354 14.55 

Preliminary Model 

X 

X 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
0 

0 

0 

0 

-1 
-1 
0 

0 

1 

1 

1 

0 0 

1 0 

1 0 

0 0 

0 0 

1 

-1 
1 

-1 

1 

-1 

0 

1 

0 

0 

0 

, 

0 

0 

0 

1 

0 

b 

, b 

= 31 

3360 
-70 
-40 
-60 
-40 
-80 

Statistical Tests D.F. Q 
b 0 
b2 =0 
b3 
b4 
b5 

b4=0 =0 b =0 
b- b5 ^b4 -b6 =0 

b2 -2b3 =0 

1 

1 

1 

1 

1 

3 

2 

1 

7.43 
2.41 
4.12 
1.96 
8.16 

14.24 
1.00 
.05 

Total Variation 

Final Model 

5 

D.F. 

22.83 

Q Statistical Tests 
b a 0 
b3 a 0 

1 

1 
9.47 

13.24 

Model: b 
Residual 

2 

3 

21.65 
1.18 

Total Variation 5 22.83 

Actual Source: National Center for Health Statistics, Office of Statistical Methods, 
Manual on Standards for Reviewing Statistical Reports(Unpublished Preliminary Draft), 
June 1973. 
Original Source: National Center for Health Statistics, Vital and Health Statistics, 
Series 22, Number 8, "Table 7. Average Birth Weight, number of birth, and percent 
distribution by birth -weight intervals according to family income in 1962 and whether 
mother was employed during pregnancy; United States, 1963 legitimate live births," 
p. 19 and Appendix I p. 30. 



smoothed cell means. In this model the employ- 
ment status effect, Q= 13.24, is significant at 
=.05 in a Scheffe multiple comparison sense with 

respect to a distribution with 5 degrees of 

freedom in the total variation space, or 3 

degrees of freedom in the total employment status 

subspace, or 2 degrees of freedom in the total 
reduced model subspace. Similarly the income 
level effect Q=9.47 is significant at =.10 with 
respect to a distribution with 5 degrees of 
freedom, or 4 degrees of freedom which pertains 
to the total income subspace, or 2 degree`s "of 
freedom. 

The third example of our sample survey model 
and the techniques guiding reduction is the esti- 
mated mean scores on the Block design subtest for 
boys and girls ages six to eleven. As before the 

total variation, Q=1719.36, is significant howev- 
er we will focus on the.sex differential since 
the age effect is a marked trend. The variation 
associated with sex, Q=30.49 is significant with 
respect to a X2(D.F. =6) distribution hence fur- 
ther analysis is warranted. The variation asso- 

ciated with the age by sex interaction, Q=10.05, 

is also significant at the =.10 level with 
respect to a X2(D.F. =5) distribution. This 

interaction is not present when only the last 5 

age groupa are considered jointly, Q=1.88. These 
produce our final model. Here we 

have an increasing score with age trend, 
Q =1377.49, an age x sex interaction term Q=28.53 
which combines boys and girls only in the first 

age group. These effects are significant with 

respect to a X2(D.F. =5) and a X2(D.F. =1) distri- 

Example 3 

Comparisons Among the Corresponding Sùbdomains of Two or More Domains 

Domain 
Age 

Subdomain 
Sex 

Estimated Mean Score Estimated 
on Block Design Subtest Standard Error 

Smoothed 
Predicted Value 

Estimated 
Standard Error 

6 years Boys 5.8 0.27 5.7 0.18 
Girls 5.7 0.24 5.7 0.18 

7 years Boys 8.5 0.29 8.6 0.24 
Girls 7.3 0.25 7.2 0.22 

8 years Boys 12.0 0.39 11.8 0.30 
Girls 10.3 0.36 10.5 0.29 

9 years Boys 14.0 0.46 14.0 0.34 
Girls 12.6 0.42 12.6 0.33 

10 years Boys 18.2 0.63 18.6 0.44 
Girls 17.5 0.55 17.2 0.43 

11 years Boys 22.3 0.62 22.0 0.50 
Girls 20.1 0.82 20.6 0.52 

Preliminary Model 

X= 

X 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

1 0 

0 0 

0 0 

0 0 

0 0 
0 1 

0 0 

0 1 

0 0 

0 1 
0 0 

1 1 

1 0 

0 1 

0 0 

0 0 

1 0 

0 0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

, 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

0 0 

0 1 

0 0 

0 0 
0 0 

b 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

20.6 
-14.9 

-13.4 
-10.2 
- 

- 

, 

8.0 
3.4 
1.4 

b 

20.1 

-14.4 
-12.8 
- 9.8 
- 7.5 

- 2.6 
0.1 
1.2 
1.7 
1.4 

0.7 
2.2 

Statistical 

Statistical Tests D.F. Q 

b 0 

b7 0 

b8 
b9 0 

10 b 0 

b 

b8 b12 0 

1 

1 

1 

1 

1 

1 

6 

5 

4 

0.08 
9.82 

10.26 
5.05 
0.70 
4.58 

30.49 
10.05 

1.88 

Total Variation 

Final Model 

11 

D.F. 

1719.36 

Tests 

Age x Sex: b7 0 

Age: b2 0, b3 0, b4 0, b5 

b6 0 

Nonlinear Age: b2 -b3 b3 -b4, 
b3 -b4 b4 -b5, b4 -b5 - b5 -b6, 
b5 -2b6 0 

0, 

1 

5 

4 

28.53 

1377.49 

45.61 

Model 
Residual 

6 

5 

1717.41 
1.96 

Total Variation 11 1719.36 

Actual Source: National Center for Health Statistics, Office of Statistical Methods, Manual on Stan- 
dards for Reviewing Statistical Reports (Unpublished Preliminary Draft), June 1973. 
Original Source: National Center for Health Statistics, Vital and Health Statistics, Series 11, No. 
107, "Table 3. Mean and standard deviation of raw scores on the Block Design subtest of the WISC by 
age and sex ... United States, 1963 -65" p. 21, and "Table III. Sampling errors for average raw scores 
on the WISC Vocabulary and Block Design subtests by age, sex, ... United States, 1963 -65," p. 38. 
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Example 4 

Evaluation of Trend Effects 

Aggressive Model Regression Model 

Midpoint Estimated Percent Estimated Smoothed Estimated Smoothed Estimated 

of Income Needing Early Standard Predicted Standard Predicted Standard 

Class Dental Visit Error Value Error Value Error 

$1000 
$3000 
$5500 
$8500 

$15000 

51.2 
50.5 
40.3 
32.4 
23.6 

3.3 50.2 1.9 

3.1 50.2 1.9 

2.2 41.2 1.2 
2.4 32.3 1.4 
2.6 23.3 2.1 

Preliminary Model 

50.8 
46.6 
41.4 
35.2 
21.7 

D.F. 

2.0 
1.6 
1.3 
1.2 
2.3 

Q Statistical Tests 
b2° 1 .02 

11000 -0.7 b3. 0 1 7.20 

X= 11100 , b= -10.2 b4 1 5.$9 

11110 - 7.9 b5 a0 1 6.19 

11111 -8.8 b2- b3a0,b2- b4aO,b2 -b5aO, 3 2.52 

b3- 2 .164 

Total Variation 4 69.45 

X- 1 1 

[1. 

1 2 

1 3 

Aggressive Model 
D.F. 

Final Model 
Regression Model 

D.F. Q Q 

X = 

1 1 

1 3 

1 5.5 

1 8.5 

115. 

Statistical Tests Statistical Tests 

Model: b220 
b= Residual 

1 

3 

69.16 
0.30 

(52.8 Model: b220 
b =I Residual 

1 

3 

65.71 
3.75 

Total Variation 4 69.45 - L Total Variation 4 69.45. 

Actual Source: National Center for Health Statistics, Office of Statistical Methods, Manual on Standards 

for Reviewing Statistical Reports, (Unpublished Preliminary Draft), June 1973. 

Original Source: National Center for Health Statistics, Vital and Health Statistics Series 11, No. 36, 

"Table 3. Percent of dentulous adults who should see dentist at early date, by family income, race, and 

sex: United States, 1960 -62," p.13. 

bution respectively. The age trend is non lin- 
ear, Q =45.61, with respect to a X2(D.F. =4) dis- 
tribution. That the final model does not obscure 
any important variation is seen from the residual 
Q =1.96, which is non -significant with respect to 
a X2(D.F. -5) distribution. The reported smoothed 
or predicted scores show all significant differ- 
ences. Note that boys and girls are equal only 
at year 6 and boys score higher at later ages. 
Also there is a substantial reduction in standard 
errors for the smoothed values which has resulted 
from the final model's characterization or par - 
tioning of the total variation space. 

Our last example uses estimates of the per- 
centage of dentulous persons in various income 
classes needing an early visit to a dentist. The 
preliminary model displays sufficient total var- 
iation(Q =69.45) with respect to a X2(D.F. =4) dis- 
tribution to indicate significant differences 
among the five income classes. However, the var- 
iation between the first two classes(Q=.02) indi- 
cates they are the same and the first difference 
occurs with the third class(Q =7.20). Moreover, 
contrasting the classes(Q -.164 and Q =2.52) re- 

veals approximately equal declines in the per- 
centages. These considerations lead to two pos- 
sible models. The regression model uses the mid- 
point of the income classes and accounts for the 
significant variation(Q- 65.71) with respect to a 

(D.F. -4) distribution, in a Scheffé multiple 
comparison sense. But it could be argued that on 
substantive grounds the first two income classes 
are the same and further the income groupings are 
essentially arbitrary. Given this the aggressive 
model would be proposed. Again, all significant 
variation(Q =69.16) is accounted for but groups 
that are probably alike are not separated. 
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